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Generation and application of the twisted beam with
orbital angular momentum
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The twisted Laguerre-Gaussian beam was generated by transforming of Hermite-Gaussian beams through
an optical system consisting of three rotated cylindrical lenses. The intensity distribution and phase
structure of the twisted hollow beam were theoretically analyzed by using Collins diffraction integral. By
utilizing the method of mode decomposition, the theory of transformation was analyzed. In the experiment,
micro particles were trapped and rotated by this twisted beam.
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It is well known from Maxwell’s theory that the elec-
tromagnetic field has linear momentum and angular
momentum. The mechanical property of momentum
was identified by Poynting vector[1]. Circularly polar-
ized beam has angular momentum, which is related to
the spin of the photon. It was firstly demonstrated
by Beth who observed the torque that exerted on half
wave plate when a circularly polarized beam passed it[2].
But it is less well known that the light might also have
orbital angular momentum, related to the dislocation
of phase front. In 1992, Allen et al. firstly predicted
that the Laguerre-Gaussian mode had orbital angular
momentum[3]. The angular momentum has shown to
have a good prospect in biology, atomic physics, and pho-
ton communication[4−10]. In this paper, we present the
results on the transforming of the unpolarized Hermite-
Gaussian beams into Laguerre-Gaussian beams by using
three rotated cylindrical lenses. By utilizing the method
of mode decomposition, the theory of transformation
was analyzed. In the experiment, the twisted beam with
orbital angular momentum was obtained and used in
trapping and rotating particles with dimension around
10 μm.

It is now well established that the beams with the az-
imuthal phase term exp(ilφ) such as linearly polarized
Laguerre-Gaussian modes have an orbital angular mo-
mentum of lη per photon[3]. Figure 1 shows the intensity
distribution and the phase front of the Laguerre-Gaussian
beams.

Fig. 1. Intensity distribution and phase distribution of the
twisted Laguerre-Gaussian beams.

The Laguerre-Gaussian modes could be generated from
the laser resonator directly, but for the reason of the in-
herent astigmatism of the resonator it is difficult to get a
stable beam output. The common way is to generate the
Laguerre-Gaussian beams by transforming the Hermite-
Gaussian beam that is easily obtained by laser systems.
An astigmatic optical element, such as a cylindrical lens,
can be used to realize such transformation. A rotated
cylindrical system is used to transform the Hermite-
Gaussian beam into the Laguerre-Gaussian beam[11,12].
It consists of three rotated cylindrical lenses with the fo-
cal lengths of f/2, f , and f/2. The axis of the cylindrical
lens is rotated by 45◦ with respect to the axis of the in-
put beam. The schematic diagram of the optical system
is shown in Fig. 2.

When a Hermite-Gaussian beam TEMHG
m,0 propagates

through the three-lens system, the field of the output
beam can be evaluated by using the Collins diffraction
integral as[13]
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where Eout(x2, y2) describes the output field in the prin-
cipal coordinates of the transformation optics, Ein(x1, y1)

Fig. 2. Three rotated cylindrical lenses used for generating
the twisted hollow beam.
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Table 1. Results of the Theoretical Calculation and Experiment

is the field of the input Hermite-Gaussian beam TEMHG
m,0

which is given by[14]
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The focal lengths of the cylindrical lenses are chosen to
match the Rayleigh lengths zRx, zRy of the input beam,

f = zRx = zRy = πw2
0/λ. (3)

Substituting Eqs. (2) and (3) into Eq. (1), the field of
the output beam can be obtained. In the focal plane of
the cylindrical lens C3, the field of the output beam is
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In polar coordinates Eq. (4) becomes
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× exp
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exp {−imϕ2} . (5)

The output beam is a Laguerre-Gaussian beam of the
order 0, m. Table 1 shows the theoretical calculation and
experimental results of the transformation of TEMHG

2,0

and TEMHG
4,0 .

The Laguerre-Gaussian modes and Hermite-Gaussian
modes both form the complete, orthogonal basic set of
resonator eigen functions. Any coherent field distribu-
tion can be described by a set of Laguerre-Gaussian
modes or Hermite-Gaussian modes. It means that the
Laguerre-Gaussian mode can be decomposed into a set
of Hermite-Gaussian modes and vice versa. By using the
relation between the Laguerre and the Hermite polynomi-
als, a Laguerre-Gaussian mode can be decomposed into
a set of Hermite-Gaussian modes of same order[15]

TEMLG
mn (x, y, z) =

N∑
k=0

ika (n, m, k)TEMHG
N−k,k (x, y, z),

(6)

where
a (n, m, k) =

(
(N−k)!k!
2N n!m!

)
· 1

k! · dk

dtk [(1 − t)n (1 + t)m] |t=0 ,
N = n + m.

Since i means a π/2 phase difference, the factor ik in
the Eq. (6) corresponds to a π/2 phase difference between
the successive components. If the principal axis has an
angle of π/4 with the coordinate axis, the decomposition
reads[15]

TEMHG
mn
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x + y√

2
,
x − y√

2
, z

)

=
N∑

k=0

a (n, m, k)TEMHG
N−k,k (x, y, z). (7)

Figure 3 shows the examples of beam decomposition.
Comparison of Eqs. (6) and (7) shows that they are

almost the same except of a factor ik or a phase shift
of π/2 between two adjacent components. When a 45◦
rotated Hermite-Gaussian beam passes through this opti-
cal system, which causes a π/2 phase difference between
the adjacent components, the output beam will be a
Laguerre-Gaussian beam. For a stigmatic Gaussian beam
the Gouy shift is given by[14] (n + m + 1)φ(z). For an
astigmatic beam the Gouy shift has two contribution[16]:
(n + 1/2)φx(z) + (m + 1/2)φy(z), with

φx (z) = a tan ((z − z0x) /zRx) ,

φy (z) = a tan ((z − z0y) /zRy) . (8)

When the rotated Hermite-Gaussian beam propagates
through the rotated cylindrical system, the Gouy shift of
adjacent components reads

Δφ = [(n + 1/2)φx (z) + (m + 1/2)φy (z)]
− [((n + 1) + 1/2) φx (z) + ((m − 1) + 1/2)φy (z)]

= φy (z)− φx (z) . (9)

Figure 4 shows the beam propagation through the

Fig. 3. Decomposition of Laguerre-Gaussian mode TEMLG
2,0

and Hermite-Gaussian mode TEMHG
2,0 into a set of Hermite-

Gaussian modes with same order.
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Fig. 4. A beam propagating through the rotated cylindrical
lens system.

rotated cylindrical lens system. The solid lines denote
the beam in the x,z plane, and the dashed lines in the
y,z plane.

Substituting Eq. (8) into Eq. (9) delivers

Δφ = 2 · a tan
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2 · z′Ry
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−2
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, (10)

where zRx is the Rayleigh length in the x,z plane, zRx =
zRy = f , z′Ry is the Rayleigh length after the cylindrical
lens C1 in the y,z plane,

z′Ry =
zRy · (f/2)2

z2
Ry + (z − f/2)2

, (11)

where z = f/2. Substituting it into Eq. (9) yields

Δφ = φy (z) − φx (z) =
π

2
. (12)

Similar to the “π/2” waveplate, we will call the three-
lens system a “π/2” mode converter. The transforma-
tion can be reversed. When a Laguerre-Gaussian beam
passing through such a converter, the output beam will
be Hermite-Gaussian beam. The three rotated cylindri-
cal lenses system can be simplified into a two cylindri-
cal lenses system firstly used by Tamm et al.[17]. Sim-
ilar to the “π” waveplate, there should be a “π” mode
converter to transform the left-hand Laguerre-Gaussian
beam into right-hand Laguerre-Gaussian beam or vice
versa. A Dove prism is commonly used to realize such
transformation. The Collins integral of Dove prism can
be written as[13]
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1√

det (A)

×
∫∫

E1 (x1, y1) δ (�r1 + A · �r2)dx1dx2. (13)

Substituting Eq. (2) into Eq. (13) delivers
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In polar coordinates Eq. (14) can be written as
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Fig. 5. Shift of the phase front when a Laguerre-Gaussian
beam passes through the Dove prism.

Fig. 6. Experimental setup of using the twisted hollow beam
for rotating particles.

Comparing Eq. (5) with Eq. (15), we find that the di-
rection of the phase front is reversed, which means that
the left-hand Laguerre-Gaussian beam is transformed
into right-hand Laguerre-Gaussian beam and vice versa.
In Fig. 5, it can be seen that the phase front is reversed
when the beam passes through the Dove prism.

Since the twisted Laguerre-Gaussian beam has an or-
bital angular momentum, which is transferable to ab-
sorbing sample, it can be used to trap and rotate mi-
cro particles. Figure 6 shows the experimental setup.
The Hermite-Gaussian beam TEMHG

2,0 generated from
a diode pumped Nd:YAG mode generater[18] with an
output wavelength of 1064 nm was transformed into
Laguerre-Gaussian beam through the three cylindrical
lenses system shown in Fig. 2. For reducing the beam
divergence, a 10× telescope was used before the twisted
hollow beam entered the microscope. Then the beam
propagated through two 45◦ high-reflection steering mir-
rors and a 100× oil-immersed objective with a numerical
aperture (NA) of 1.25. The dye particle with a dimen-
sion of around 10 μm was used in the experiment. Figure
7 shows the images of the particle with a rotation fre-
quency of 3.8 Hz. The power of input beam TEMLG

2,0 was
60 mW. The frequency of particle rotation increased with
the power and the mode number of the input Laguerre-
Gaussian beam. Figure 8 shows the dependence of the
angular speed of rotation on the power of the beam.

When the three cylindrical lenses were rotated from
45◦ with respect to the axis of input beam to 135◦, the
reverse rotation of micro particle was observed. Since
the spin angular momentum and scattering force are in-
dependent of the direction of the cylindrical lens, it is

Fig. 7. Rotation of the particle. The frequency of rotation is
about 3.8 Hz.
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Fig. 8. Rotation frequency versus the power of the input
beam.

testified that the rotation of the particle is caused by the
orbital angular momentum.

In steady state, the torque of field is balanced by the
torque of the liquid, which delivers the stationary angu-
lar velocity. The torque transferred to the particles can
be given by

τ = jZ,Lηabs =
λmP

2πc
· ηabs, (16)

where ηabs is the absorption coefficient of the particle.
For a torque τ , the limited angular velocity of the parti-
cle with a radius r is

ωlim =
τ

−8π · r3 · ηliquid
, (17)

where ηliquid is the viscosity of the surrounding liquid.
For a particle with a dimension around 10 μm and an
input power of 60 mW, the rotation speed is about 4 Hz,
which implies that the absorption of the particle is of the
order of 9%.

The Laguerre-Gaussian beam was generated by prop-
agating the Hermite-Gaussian beam through the three
rotated cylindrical lenses system. The generated beam
has a ring intensity distribution and a twist phase distri-
bution that is related to the orbital angular momentum.
The twisted beam was used in trapping and rotating mi-
cro particles.

This work was partly supported by the National Nat-
ural Science Foundation of China (No. 69908001), and

the Characterization of Optical Components and Laser
Beams II of Germany and the international cooperation
agreed by DFG and NSFC. Prof. G. Wei, Dr. B. Ep-
pich, Dipl. Phys. G. Mann are greatly grateful for their
fruitful discussions and helps. M. Gao’s e-mail address
is ghew@bit.edu.cn.

References

1. J. D. Jackson, Classical Electrodynamics (Wiley, New
York, 1962).

2. R. A. Beth, Phys. Rev. 50, 115 (1936).

3. L. Allen, M. W. Beijersbergen, and R. J. C. Spreeuw,
Phys. Rev. A 45, 8185 (1992).

4. H. He, M. E. J. Friese, N. R. Heckenberg, and H.
Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).

5. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N.
R. Heckenberg, Phys. Rev. A 54, 1593 (1996).

6. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu,
and H. Sasada, Phys. Rev. Lett. 78, 4713 (1997).

7. B. Xia and W. Hai, Chin. Opt. Lett. 3, 373 (2005).

8. M. P. MacDonald, G. C. Spalding, and K. Dholakia, Na-
ture 426, 421 (2003).

9. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold,
and J. Courtial, Phys. Rev. Lett. 88, 257901 (2002).

10. J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S.
Franke-Arnold, and M. J. Padgett, Phys. Rev. Lett. 92,
013601 (2004).

11. A. T. Friberg, E. Tervonen, and J. Turunen, J. Opt. Soc.
Am. A 11, 1818 (1994).

12. A. Friberg, C. Gao, B. Eppich, and H. Weber, Proc.
SPIE 3110, 317 (1997).

13. N. Hodgson and H. Weber, Optical Resonators: Funda-
mentals, Advanced Concepts and Applications (Springer
Verlag, Berlin, 1997).

14. A. E. Siegman, Laser (University Science Books, Mill
Valley, 1986).

15. E. Abramochkin and V. Volostnikov, Opt. Commun. 83,
123 (1991).

16. D. C. Hanna, IEEE J. Quantum Electron. 5, 483 (1969).

17. C. Tamm and C. O. Weiss, J. Opt. Soc. Am. B 7, 1034
(1990).

18. H. Laabs and B. Ozygus, Opt. Laser Technol. 28, 213
(1996).


